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ABSTRACT 

This paper introduces a novel algorithm for solving the two-dimensional Euler and Navier-Stokes 
compressible equations using a one-step effective flux vector-splitting implicit method. The new approach 
makes a contribution by deriving a simple and yet effective implicit scheme which has the features of an 
exact factorization and avoids the solving of block-diagonal system of equations. This results in a significant 
improvement in computational efficiency as compared to the standard Beam-Warming and Steger implicit 
factored schemes. The current work has advantageous characteristics in the creation of higher order 
numerical implicit terms. The scheme is stable if we could select the correct values of the scalars and 
for the respective split flux-vectors and along the ξ- and η-directions. A simple solving procedure is 
suggested with the discussion of the implicit boundary conditions, stability analysis, time-step length and 
convergence criteria. This method is spatially second-order accurate, fully conservative and implemented 
with general co-ordinate transformations for treating complex geometries. Also, the scheme shows a good 
convergence rate and acceptable accuracy in capturing the shock waves. Results calculated from the program 
developed include transonic flows through convergence-divergence nozzle and turbine cascade. 
Comparisons with other well-documented experimental data are presented and their agreements are very 
promising. The extension of the algorithm to 3D simulation is straightforward and under way. 
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INTRODUCTION 

An implicit scheme which determines the unknowns at each new time-level through the solution 
of linear algebra systems to avoid the CFL limitation for stability along the time direction, has 
been implemented widely, especially in solving the Navier-Stokes equations for improving its 
convergent rate and computational efficiency. The development of an implicit scheme is classified 
into two approaches: 

(1) the implicit approximate factorization (AF) method such as the schemes by Beam and 
Warming1 and MacCormack2. These methods are widely used because they can solve the 
block-tridiagonal (or block-bidiagonal) algebra equations at each dimension, with less 
computational efforts. The scheme has been modified and improved by Von Lavante and 
Lyer3, Dawes4 and Jameson5. They used the spectral radii technique instead of the matrix 
calculation. The common characteristic of these methods are that they stress the simplifying 
of implicit algebraic equations and enable the higher dimension problems to reduce to the 
lower dimension one. However, the use of approximate factorization will inevitably increase 
the truncation error with a large time step. Thus the precision and stability of the scheme are 
affected, and this can cause an unstable situation when it is applied to the 3D problem. 
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(2) the method without any approximate factorization but to solve the five diagonal (2D) or 
seven diagonal (3D) matrix equations directly by. using some effective algebra methods, 
such as the strongly implicit procedure by Sankar et al.6 and the Guass-Seidel interaction 
method by Ames7. The method has good compatibility where higher CFL numbers can be 
used; however, its drawback is that a greater amount of computational effort is required. 

Combining the advantages of the above two approaches (i.e. by using the spectral radii technique 
to simplify the calculation and by avoiding the approximate factorization to increase the CFL 
number and stability), we may obtain an improved implicit scheme which has the characteristics 
of exact factorization and avoiding the solving of the block-diagonal system of equations. Thus, 
the objective of the present work is to develop a simple and yet efficient flux vector-splitting 
implicit scheme which possesses the above characteristics. The first-order implicit scheme for 
Euler equations is developed initially and then extended to the second-order accuracy for Navier-
Stokes equations. A simple solving method is also suggested with the discussion of the implicit 
boundary conditions, stability analysis, time-step length and convergence criteria. Finally, an 
investigation of the various aspects of the algorithm against flows with reliable experimental data 
are included. 

MATHEMATICAL MODEL 

The governing equations in body-fitted co-ordinate system 
The 2D transformed Navier-Stokes (1) and Euler equations (2) are written as (see Anderson et al.8): 

and 

where 

and 

are the contravariant along ξ and η coordinates respectively. 
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Explicit boundary conditions 
The solution at the farfield boundaries is not known a priori since it is affected by the flow 
within the computational domain. Thus, boundary conditions must evolve with calculation. 
Ideally, these boundary conditions should be treated as a physically relevant solution and do not 
cause non-physical reflection of waves passing through the domain. Hedstrom9 has shown that 
this can be done by performing a characteristic analysis of the 1D equations normal to the boun­
daries. The number and type of conditions specified are determined by those characteristics that 
enter the domain. At the inlet, the right-moving characteristics enter the domain. Thus, four 
boundary conditions are specified for supersonic inflow, and three are specified for subsonic 
inflow. 

Obviously, the solid boundary conditions for viscous flow is a no-slip condition. In addition, 

the solid wall pressure and density conditions: are used to determine 
these parameters. However, in the case of inviscid flow, it is necessary to satisfy the slip 
condition. This is expressed by the vanishing of the normal velocity vn = 0. 

NUMERICAL DISCRETIZATION 

The analysis of implicit scheme construction 
The non-linear flux vectors F and G of equations (1) and (2) are homogeneous functions of degree 
one. We can split the flux vectors F± and G± of every computational point into two subvectors 
respectively according to the positive and negative eigenvalues. The subvectors F+ and G+, which 
have positive eigenvalues, use the backward-difference operator whereas the subvectors F- and 
G- which have negative eigenvalues which apply the forward-difference operator. 

The Euler equations (2) can be rewritten as: 

where A and Β are the Jacobian matrices ∂F/∂U and ∂G/∂U respectively. In general, they are 
homogeneous matrices which exist in a similarity transformation9 such that: 

and 
(4) 

where is the diagonal matrix, a is the speed of sound in physical domain, and 

From equation (4). we have the eigenvalues: 
λ1 = λ2 = λ3 = + aL(ξ) and λ4 = - aL(ξ) for flux vector F and 
λ1 = λ2- λ3 = + aL(η) and λ4 = - aL(η))for flux vector G. 
Based on these positive and negative eigenvalues, the expressions for calculating the subvectors 
F± and G± can be simplified and summarized as follows: 
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where C1 - 2(γ - 1)λι + λ3 + λ4, C2 = λ3- λ4, C3 = λ3 + λ4 and 
are the constants on computational point (i,j). When calculating the F+ 

and G+ terms, the positive eigenvalues are used with any negative eigenvalue set to zero. 
Conversely, when calculating F-and G- terms, the negative eigenvalues are used with the 
positive one set to zero. The final equations for solving inviscid flow in the flux vector-splitting 
form are thus: 

For Navier-Stokes equations (1), the RHS terms, i.e. viscous flux-vectors Q and R, mainly 
consist of the first-order derivative of variables u, ν and T. First, the direction of the 
information dependent region for Navier-Stokes solutions corresponding to Q and R does not 
change with the velocity, therefore it is not necessary to choose the difference direction 
according to the eigenvalues. Second, the first-order derivatives ρξ, iξ, νξ and Τξ in the Q and 
R only bring the upward influence for the solution while the second-order derivatives pξξ, etc. 
induce both the upward and backward influences for the solution. Therefore flux vectors Q and 
R should use the two-side differencing and need not be split into the subvectors. The final 
equations with flux vector-splitting form for viscous flow are therefore obtained accordingly 
as follows: 

In brief, the problem which exists in all of these schemes is that the approximation factorization 
techniques are all adopted in their smoothing for implicit calculation. These cause the difficulties 
in the stability for the 3D calculations. 

The construction of an efficient flux vector-splitting implicit scheme 
A new implicit numerical scheme can be constructed if its associated smoothing method for 
implicit simulation has a characteristic of unconditional stability. Using the idea of formulating an 
implicit scheme without approximate factorization and the coefficient block-diagonal system of 
equations together with the concept of characteristics for flux vector-splitting, the following 
higher-order extra small terms 
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can be added to the right-hand side of the equations (6) and (7) directly to form the implicit 
schemes for the Euler and Navier-Stokes equations respectively. The approximate partial 
differential equations of (6) and (7) can therefore be obtained as follows: 

and, 

In equations (8) and (9), the higher-order extra terms 

are the implicit construction items for the convection fluxes F± respectively along the ξ direction, 
where are the scalars corresponding to the eigenvalues of the matrices F±. Likewise, 

are the implicit construction items for the fluxes G± respectively along the η direction, where 
are the scalars corresponding to the eigenvalues of matrices G±. This newly formed implicit 

scheme is stable if we could select the correct values for the scalars (i.e. and 
Notice that the newly added terms are the unsteady items corresponding to the ∂U/∂t, therefore, 

we can say that as far as the theory is concerned, they have no influence on the solution once it has 
converged to the steady state. 

By differencing equation (8) and rearranging, we obtain: 
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Now, equation (10-1) can be considered as an explicit step that describes the physical conserva­
tion law while equation (10-2) can be considered as an implicit step to ensure the calculation 
stability for a large time step. For inviscid flow, the explicit step ΔU n

i j can be differenced with 
either first-order accuracy by using two-point backward and forward methods or second-order 
accuracy by using three-point backward and forward methods. In scheme (10), as the terms and 

are all scalars, thus the computational efforts are reduced greatly as compared to the other 
coefficient matrix implicit schemes for all time steps n, such as those by Chakravarthy et al.10 and 
Moretti11. The major characteristic of the present scheme is that of exact factorization approach. 
Furthermore, the above scheme is a one-step method which has the added advantage for 
calculation with a large timestep where the same difference scheme should be used to obtain the 
convergent solution without oscillations. 

Similarly, we could obtain the difference scheme for Navier-Stokes equations (9) as follows: 

It is important to note that, to solve a viscous flow, the explicit step ΔUn
ij must be differenced with 

second-order accuracy in order to avoid the numerical viscosity smearing of physical nature, thus 
we adopt: 

= backward operator = 0.5(3uj — 4uj + uj - 2 ) and, 
Δx = forward operator = 0.5(- 3uj + 4uj + 1 - uj + 2)· 

Solving method for the implicit step 
Figure 1 shows the grid distribution in the computational domain. The grid points are arranged 
from 1 to II along ξ direction, and from 1 to JJ along η direction. In order to solve the implicit step, 
equations (10-2) and (11-2) are rearranged in the following manner: 

The above equations can be solved easily by the Thomas algorithm8. Calculation begins with 
I = 1 station until I = II along ξ direction. At each I station, term is just obtained and 

is available with the value of the last time step, so the right hand side of equation (12) 
is all known. In this way, the unknown, and can be obtained directly 
by the Thomas algorithm along η direction. Hence, an approximate factorization and 
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coefficient block-diagonal system of equations can be avoided successfully in solving 
equation (12). 

Implicit boundary conditions 
It is known from equation (12) that the implicit flux vector-splitting scheme consists of an explicit 
part ΔUnij and an implicit part δUij. We propose δU|Bound = 0 for the inlet, outlet and solid implicit 
boundary conditions. For the steady state calculation, when it approaches a convergent solution, 
∂Ul∂t will tend towards zero, i.e. δU→0. Therefore, at least in theory, this hypothesis is correct. 
For the periodical boundary condition that exists in the cascade calculation, the more realistic 
approach is to let δUi,1 = δUi,JJ. 

Stability analysis 
The 2D Navier-Stokes equations in flux vector-splitting form (7) can be written as: 

where A±, B±, Mξ, Μ , Nξ and Νη are all matrices with: 

According to Liu's12 1D model equations and MacCormack-81 scheme's2 stability conditions 
together with the characteristic theory of equations, we propose the following stability conditions 
for the current implicit scheme (12): 
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where p(A±), p(B±), ρ(Μξ), ρ(Μη), ρ(Νξ) and p(Nη) are the spectral radii of the matrices A±, B±, 
Mξ, Μη , Np and Νξ respectively. By solving these spectral radii, and putting them back into 
equation (14-1), the stability conditions can be obtained as follows: 

where ω = max a is speed of sound, μ' is the second 

coefficient of μ, and c = 2. 
Likewise, we can also obtain the stability conditions for an inviscid flow with (2ω]ρ) terms = 

0. In principle, when As are chosen from equation (12) or (13), the implicit method (9) or (8) can 
be granted as a stable scheme at any time step. Therefore, we could say that the schemes (8) and 
(9) are unconditionally stable from this point of view. 
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Time-step length 
We choose the time-step length according to the following CFL number definition: 

Δί = min{Δtξ, Δtη} (15) 

For inviscid flow: 

For viscous flow: 

It is obvious that when the CFL number is smaller than or equal to 1.0, Δt is the time-step length 
for an explicit scheme, and and of the whole field will pose to zero automatically. Therefore, 
the implicit scheme will reduce to the explicit scheme in this case. 

In the current calculation, the CFL number for the implicit scheme is chosen to be about 30. But 
for a specific problem, it is restricted by many factors. For example, when the grid distribution is 
uniform, the CFL number can be even higher, otherwise it can only be given to be around eight for 
complex geometries and grid generation. 

Convergence criteria 
There are various methods to check whether the result has converged to the steady state solution. 
In the present work, the following two convergence criteria are used: 

where U is the same term as used in schemes (11) and (12), ΔU is the difference between the two 
iteration steps and φ is any other gasdynamics parameter, (Δφ/φ)max is the maximum relative 
difference of that gasdynamics parameter at any grid point. Note that the values of εη and εφ are 
both assigned as 1 x 10-4. 

COMPUTATIONAL RESULTS AND SAMPLE APPLICATIONS 

Based on the efficient flux vector-splitting implicit scheme, the algebraic Η-grid generator and 
Baldwin-Lomax turbulent model13, a software package for solving the 2D Euler and time-
averaged Navier-Stokes equations is developed. 
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Study of the typical convergence histories with different CFL numbers 
Typical convergence histories with both inviscid and viscous flows are presented in Figures 2 and 
3 for the computation of convergence-divergence nozzle flows with their grid distributions of (35 
x 15) and (41 x 25) respectively where the operating mode of supersonic flows at exit are being 
considered. 

Figure 2 reveals the convergence history with CFL = 0.8, 5, 10, 25 and 100 for inviscid flow. 
From this figure, we can see that the convergence rate is improved significantly when larger CFL 
numbers are used. For example, the norm residual reduces four orders of magnitude with 300 
iteration time steps for CFL = 25, as compared to 1,000 iteration steps in the case of CFL = 5 to 
reduce the same order of magnitude. Also, in the case of CFL = 0.8, which means the implicit 
scheme reduces to the explicit scheme, it only drops 1.5 orders of magnitude with 2,000 iteration 
steps. However, there is no obvious effect on improving the convergence rate by continually 
increasing the CFL number. 

Figure 3 indicates the convergence history with CFL = 0.8, 2, 5, 8,10 and 12 for viscous flow. 
Because the flux vectors associated with viscous terms Q and R are not split into the upwind forms 
(central differencing is used here), as highlighted in the section on construction of an efficient flux 
vector-splitting implicit scheme, the convergence ability is influenced and thus the CFL number 
cannot be as large as in the inviscid flow calculation. Nevertheless, the convergence rates are 
improved significantly when larger CFL numbers are used. 
In general, it is better to choose a CFL number in the range of 20 to 30 for inviscid calculation and 
between 5 and 10 for viscous flow computation when using the present efficient flux vector-
splitting implicit scheme. In such a case, only about 300 to 500 iteration time steps are needed to 
obtain the satisfactory convergent result for the inviscid calculation and about 600 iteration time 
steps for viscous prediction. The code runs at about 1.042 x 10 -4 seconds per point per time step 
for inviscid flow and about 1.902 x 10-4 seconds per point per time step for viscous flow on a Vax-
9000 machine. 
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Convergence-divergence nozzle flow 
In the first example, both the inviscid and viscous computations for two operating conditions with 
exit isentropic Mach numbers (M2is) of 1.6 and 0.6 are carried out on the nozzle domain. 

First, the operating mode of supersonic flow at exit is considered. Figure 4 shows the 
comparison of the inviscid and viscous predicted surface pressure distributions with experimental 
data taken from Zheng14. It is found that both inviscid and viscous numerical solutions agree 
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closely with the measured result, in which the viscous prediction has a better agreement. Second, 
the operating mode of having a shock wave is computed. Figures 5 and 6 present the Mach number 
contours obtained from the inviscid and viscous calculations respectively. From these contours, 
both the changes of Mach number distribution when shock wave appears and the differences in the 
velocity distribution for inviscid and viscous flow predictions can be clearly discerned. As before, 
Figure 7 shows the comparison of the inviscid and viscous predicted surface pressure distributions 
with experimental data taken from Zheng14, and both inviscid and viscous numerical solutions 
agree very well against the measured result. Here, the y+ value of the first node next to the wall is 
3.0 for the Navier-Stokes case. 

In the above calculation, only about 300 time steps with CFL = 30 and about 500 time steps 
with CFL = 10 are required for the inviscid and viscous calculations respectively to obtain 
satisfactory results. 

Transonic turbine cascade 
The second test case consists of the inviscid and viscous calculations through a transonic turbine 
cascade. The code used a simple Η-grid system with (41 x 25) points for both viscous and inviscid 
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flows as shown in Figure 8, where the y+ value for the first node next to the blade surface is 2.0. 
The flow conditions are as follows: 

Inlet stagnation pressure P0
* = 199,555 N/m2 

Inlet stagnation temperature T0
* = 288° Κ 

Outlet static pressure Pb = 102,318.3 N/m2 

Inlet flow angle α = -21.2° 
Cascade pitch t = 0.09163m 

Comparisons between the inviscid and viscous calculations are conducted. Figure 9 presents the 
surface pressure distributions. The triangle and square symbols indicate the measured data 
obtained from Zhang15. The short and long dash lines illustrate the current inviscid prediction on 
suction and pressure surfaces respectively while the solid and dash-dot-dot lines represent viscous 
prediction results on suction and pressure walls. The shock wave is captured accurately in both 
cases as compared to the experimental result except a slightly higher prediction occurs in the 
suction surface pressure distribution with the inviscid flow calculation (due to zero blade 
boundary layer as expected). Finally, Figure 10 illustrates the Mach contour distributions for the 
inviscid and viscous flow predictions; their differences can be clearly discerned. In the above 
calculations, about 600 and 900 iterate time steps are needed for inviscid and viscous flows with 
CFL= 18 and 9 respectively. 

CONCLUSIONS 

A one-step efficient flux vector-splitting implicit scheme suitable for both inviscid and viscous 
2D flow calculations has been developed successfully. It has the following special advantageous 
characteristics: 
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(1) A significant improvement in computational efficiency is achieved as compared to the well-
known Beam and Warming1 and Steger16 implicit factored schemes because it has an 
advantage in the formulating of higher-order numerical implicit terms. 

(2) The weakness of no superior in the main diagonal of coefficient matrix in conventional 
approximate factorization method is avoided and the solving procedure is improved. 

(3) Spectral radii technique is used to replace the coefficient matrix calculation, hence the 3 x 3 
systems of equations are being transformed to the three scalar equations in the current 2D 
work, where comparatively fewer computational efforts are needed. 

(4) No approximate factorization occurs in the time-marching process, so there is no numerical error 
caused by an approximate factorization, and it helps to increase the CFL number for calculation. 

(5) It is a one-step scheme which aims to improve the convergent ability, especially for large 
time-step computations, as it can converge to the numerical solution with zero output of 
computer's error in principle. 
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(6) The flux vector-splitting implicit scheme is an upwind scheme, the flux-vector is split 
according to the physical characteristics and corresponding difference schemes are adopted to 
restrain the numerical errors. Thus it is a stable scheme without the need to add any artificial 
viscosity and simplifies the calculation. 

Finally, the concepts involved in the construction of an implicit scheme with an exact factoriza­
tion and avoiding of the coefficient block-diagonal system of equations, together with their suc­
cessful applications, provide future prospects for further development in 3D problems. 
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